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ABSTRACT

An active area in psychometric research is coordinated task design and statistical

analysis built around cognitive models.  Compared with classical test theory and item

response theory, there is often less information from observed data about the

measurement-model parameters.  On the other hand, there is more information from the

grounding psychological theory, and the task-designer�s insights into which patterns of

skills lead to which patterns of performance.  We describe a Bayesian approach to

modeling these situations, which uses expert� judgments to produce prior distributions for

the conditional probabilities in a multivariate latent-variable model, and MCMC

estimation to refine the estimates.  Task-design schemas and expert judgments are used in

the first phase to structure the conditional probability table�i.e., conjunctive,

compensatory, or disjunctive models, or combinations thereof.  Machinery from graded-

response IRT is used to translate experts� judgments about task requirements into prior

distributions for model parameters, which in turn implies values for all the conditional

probabilities.  Bayesian estimation methods are then used to update the distributions for

the model parameters in response to observed data.  The approach is illustrated with

examples from the Biomass biology assessment prototype.

Key words: Bayesian methods, cognitive models, MCMC estimation, structured latent

class models



1.0 INTRODUCTION

Insights from cognitive psychology and opportunities from information technology

are changing the face of educational assessment today, with new models for what

students know and can do, and new ways of capturing data to inform them (Pellegrino,

Chudowsky, & Glaser, 2001).  Consequently, an active area in psychometric research is

coordinated task design and statistical analysis built around cognitive models (e.g.,

Adams, Wilson, & Wang, 1997; Embretson, 1985, 1998).  Compared with classical test

theory and item response theory, there is often less information from observed data about

the measurement-model parameters.  On the other hand, there is more information from

the grounding psychological theory, and the task-designer�s insights into which patterns

of skills lead to which patterns of performance.  In this paper we describe a Bayesian

approach to modeling these situations, which uses expert� judgments to produce prior

distributions for the conditional probabilities in a multivariate latent-variable model, and

Markov Chain Monte Carlo (MCMC) estimation to refine the estimates.

Of particular importance is integrating the statistical machinery of Bayesian inference

with the substantive issues of task design and evaluation, from the very beginning of an

application.  In the first phase of modeling, task-design schemas and expert judgments

are used to structure the conditional probability tables required to model task

performance�i.e., conjunctive, compensatory, or disjunctive models, or combinations

thereof.  In the second phase, models from graded-response item response theory (IRT)

are used to translate experts� judgments about task requirements into prior distributions

for model parameters.  In the third phase, Bayesian estimation methods are used to update

the distributions for the model parameters in light of observed data.

We illustrate the approach with examples from Biomass, a project carried out at

Educational Testing Service (ETS) in 2000.  The project produced a computer-based

prototype assessment for secondary-school biology, with an emphasis on inquiry skills

and model-based reasoning in microevolution and transmission genetics. Four multistage

investigative tasks were developed using the �evidence-centered assessment design�

approach described in Mislevy, Steinberg, Breyer, Almond, and Johnson (in press).  The

first segment of one task was pilot tested with 28 summer students at ETS and Montclair
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State University, and these data will be used to refine the model parameters in the third

phase of inference.

2.0 PHASE 0: THE PROBABILITY FRAMEWORK

This section describes the structure and notation we will use for modeling assessment

data, and a Bayesian approach to inference in this context.

2.1 A Graphical Model for Assessment

For each Student i, let Si ≡(Si,1,�, Si,N ) be a collection of variables characterizing

that student�s knowledge, skills or abilities in some domain of interest.  We refer to this

set of variables and a joint probability distribution as a student model.  At any point in

time, we represent our knowledge about that student's proficiency by a probability

distribution.  The prior Pr(Si) is usually based on the distribution of these skills in the

population of interest.  We are interested Pr(Si | Xi), where Xi ={Xi1,�,XiM} are

observations from the student�s responses to a collection of M tasks (Almond & Mislevy,

1999).  A task may yield more than one observation, as when multiple aspects of a

complex performance are evaluated, or several questions are asked about the same

stimulus materials.  In this case, Xim is vector-valued, and observations within task m will

be denoted Xijm with j indexing observations within task m.

If we knew Pr(Xi|Si), we could apply Bayes theorem to calculate Pr(Si| Xi).  Usually

we assume that the observations from different tasks are conditionally independent given

the student model variables.  Thus we consider evidence models Pr(Xim| Si), in which the

observable(s) in task m, or Xim, is (are) conditionally independent of all observable

variables of other tasks and all but a subset of student-model variables.  In particular,

( )iim SXPr  = ( ))(Pr m
iim SX , where )(m

iS ⊂  Si.  We call )(m
iS  the footprint of evidence

model m.  Section 3 notes the advantages of defining re-usable evidence structures and

conformable task schemas, where the relationships between student-model variables and

evidence-model variables have been worked out and can be used as skeletons for creating

many individual tasks.

At the heart of evidence model m is a collection of conditional probability tables, one

for each variable in the evidence model. The case we will address is the multivariate

latent class model, in which all student model variables Si and all the observable variables
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Xi,m are discrete.  We may therefore represent the distribution Pr(Si) as a discrete

Bayesian inference network (Jensen, 1996), as well as joint distributions of the form

( ) ( ) ( ).PrPr,,,Pr
1

)(
1 ∏

=
=

M

m

m
iimiiMii SXSXXS � . (1)

We will refer to Pr(Si) as an SM-BIN fragment and Pr(Xim| Sim) as an EM-BIN fragment.

Now if we wish to elicit an unstructured prior for Pr(Xim | )(m
iS ), we must specify

imS Dirichlet distributions, where imS  is the size of the state space of the footprint of

Task m. This can be a daunting task. For instance, there are about a hundred observable

variables in the Biomass example discussed below, most with three possible values, many

with size 18 footprints�over five thousand individual probabilities altogether.  In the

special case of IRT we have a long history of building evidence models.  We aim to draw

on that experience to create �structured latent class models� (Formann, 1985) for more

ambitious structures for Pr(Xim| )(m
iS ).

2.2 A Bayesian Framework

Gelman, Carlin, Stern, and Rubin (1995, p. 3) describe the first step in Bayesian

analysis as setting up a full probability model, or joint probability distribution for all

observable and unobservable quantities in a problem.  �The model,� they continue,

�should be consistent with knowledge about the underlying scientific problem and the

data collection process.�  In assessment, scientific knowledge concerns the nature of the

targeted knowledge and skill, the ways in which aspects of that knowledge are evidenced

in performance, and the features of situations that provide an opportunity to observe those

behaviors.  The key conditional independence assumption posits that in the main, the as-

pects of proficiency expressed in S account for the associations among responses to

different tasks (although we may allow for conditional dependence among multiple re-

sponses within the same task); this assumption is manifest in the form of the evidence

models described above.

The pertinent variables in assessment obviously include tasks� characteristics and

requirements, notably features that have been chosen to elicit observations of the

particular kinds, and depending on particular knowledge in ways reflected in the structure

of some particular evidence models.  Because this presentation focuses on probability-
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based inference given assessment tasks, we will presume that this design work has been

done and the appropriate evidence-model structures have been identified.  Sections 3 and

4 show how we use the knowledge that the task authors drew upon when we set prior

distributions for the conditional probability tables.

We must thus focus attention on the Xs, which are potentially observable, and

examinees� Ss, which are not. Structures and parameters that reflect interrelationships

among these variables, consistent with our knowledge about them, are also needed.   We

may start with general forms for the SM-BINs and EM-BINs.

The SM-BIN for Examinee i takes the form of a probability distribution for Si.  An

assumption of exchangeability posits a common prior distribution for all examinees

before any responses are observed, with beliefs about expected levels and associations

among components expressed through the structure of the model and higher-level

parameters λ; whence, for all examinees i,

( )λ;~ ii SpS .

Depending on theory and experience, the distribution for the hyperparameter λ, or p(λ),

may be vague or precise.

Let mππππ denote the conditional probabilities in the EM-BIN distributions of Task m.

Specifically,

smjkπ  = ( );Pr sSkX iimj ==

that is, the probability of observing a value in response category k for observable variable

j of Task m, given that SM variables take the pattern s. Recall that by definition, this

probability depends only on )(m
iS , the footprint of Task m.  The distribution of the

response of Examinee i for Observable j of Task m is

( ))(,~ m
imjimjimj sxpx π ,

where mjπ  represents the conditional probabilities for all possible values for Observable j

of Task m, given all possible SM patterns.

All tasks using a given EM-BIN structure produce observables in the same forms,

furnishing information about the same components of S.  However, features of the tasks

can vary in ways that moderate the relationships.  For example, unfamiliar vocabulary
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and complex sentences tend to make reading comprehension tasks more difficult. One

can model πs directly in terms of item features (e.g., Mislevy, Almond, Yan, &

Steinberg, 1999).  The alternative we will address in this paper parametric modeling of

the πs, the parameters of which may be informed by expert opinion or empirical data.1

Denoting all the higher-level parameters for Task m by ηm,

( ),~ mmm p ηππ

again with prior knowledge about ηm expressed through higher-level distributions ( )mp η .

The complete collection of probabilities for all EM-BINs for all tasks is denoted ππππ, the

parameters for all examinees is denoted S, and the responses of all examinees to all tasks

is X.

The probability model for the responses of N examinees to M tasks can now be

written as

( ) ( ) ( ) ( ) ( ) ( ).,,η,π,, )( λληηππλ pspppsxpp i
i m j

mmmjmj
m

iimj∏∏∏=SX (2)

Figure 1 represents this model as a generalized form of an acyclic directed graph

(�DAG�), with boxes representing repeated elements of the same kind (Spiegelhalter et

al., 1996).  The structure and the nature of the distributions is tailored to the particulars of

an application.

[[Figure 1: generic BUGS-type DAG of Bayesian model]]

Section 3 concerns the structure of complex assessment tasks and their inter-

relationship with students' knowledge and skills.  Section 4 concerns the way that these

considerations can be structured and parameterized in terms of probability distributions,

and experts' insights mapped into the formal Bayesian framework   These activities

provide the form for (2) in a given assessment context.  Section 5 discusses numerical

methods of updating beliefs about examinees and tasks within this framework, as revised

posterior distributions for examinee and task parameters, in light of a sample of

responses.

                                                          
1  All of these kinds of information may be available, of course, and it is straightforward to incorporate
them into a unified model.
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3.0 PHASE 1: EVIDENTIARY STRUCTURES BASED ON TASK SCHEMAS

This section sketches the idea of building evidence models around recurring

structures among SM variables and observable variables�relationships such as

compensatory, conjunctive, disjunctive, and inhibition relationships, and a kind of

conditional dependence among observations that is analogous to method factors in factor

analysis.  Section 3.1 addresses initial implications for Bayesian modeling, and Section

3.2 describes examples from Biomass.

3.1 Recurring structures in the evidence models

Mislevy, Steinberg, and Almond (in press; also see Mislevy, Steinberg, Breyer,

Almond, & Johnson, in press) discuss the use of re-usable evidence structures including

the SM- and EM-BINS described above, along with conformable task schemas, as

�evidentiary skeletons� around which to create an indefinite number of individual tasks.

This is especially advantageous in assessments that use complex tasks, where

complexities can include multivariate student models, multivariate observations that

depend on the SM variables in different combinations, and dependencies among and

within tasks: The structure of situations that elicit valued knowledge and skill can be

defined at a higher level of generality, so that the essential relationships among student-

model variables and evidence-model variables can been worked out and used to build

many tasks that may appear quite different on the surface. Following the advice in

Mislevy, Steinberg, and Almond (op cit.), we want assessment designers to create

schemas for creating individual tasks that are built around particular configurations of

skills and observations that bear evidence about them.  Following the advice in Gelman,

Carlin, Stern, and Rubin (op cit.), we want to incorporate these relationships into

Bayesian analyses of observations in these situations.

A test developer who is familiar with a content area and the way students acquire and

use knowledge in that area can create situations in which several aspects of skill and

knowledge will be required in predictable ways.  Some relationships that are familiar

from test theory are described below.  Section 4 proposes mathematical forms through

which they may be expressed.

•  Graded response categories, as addressed by graded-response IRT models.  When

aspects of a student�s performance are evaluated, there may be dimensions of
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quality that can be described as a sequence of increasingly valued equivalence

classes.  Performances rated in higher categories are more likely from students

with more of whatever combinations of skills are required in the task, while

performances in lower categories are more likely from students with less of that

proficiency.

•  Conjunctive relationships, as in binary skills latent class models (Haertel, 1984).

Multiple skills are required for performance, and lacking any of them causes

lower levels of expected performance.  These relationships correspond to AND-

gates in logic.

•  Disjunctive relationships, which correspond to OR-gates.  Multiple skills are

required, and increasing values of any of them causes higher levels of  expected

performance.

•  Compensatory relationships, as in multiple factor analysis (Thurstone, 1947).

Multiple aspects of skill or knowledge are involved in performance as captured in

an observable variable, and higher levels of those skills imply increasing

probabilities of higher levels of the outcome.

•  Inhibition relationships, (or, stated positively, �enabling relationships�) as when a

modicum of reading skill is needed to read the directions for more challenging

Listening tasks in language assessment (Hansen, Forer, & Lee, 2001).  Multiple

skills are required, but only relatively low values for the �inhibitor� variables.

Once these requirements are met, level of performance depends mainly on the

other variables.

•  Conditional dependence, as found among ratings of different aspects of the same

performance and among items that share common stimulus materials (Wainer &

Keily, 1987).  Conditional dependence concerns relationships among multiple

observable variables, indicating that they are related in ways beyond those

implied by just the SM variables in their footprint.  Ignoring these dependencies

results in �double-counting� the information they provide.  They are handled in

factor analysis with so-called method factors, on which only the affected variables

have loadings. Analogous approaches have been implemented in IRT by Bradlow,

Wainer, and Wang (1999) and Gibbons and Hedeker (1992).
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These utility of these basic structures can be extended by chaining, catenating, or

layering them in order to model more complex relationships. Although these relationships

can be estimated from data, substantive considerations and design practice can provide

strong prior knowledge about the structure of any given task.

3.2 Biomass Examples

As mentioned above, the prototype assessment developed in Biomass addressed

inquiry skills and model-based reasoning in the context of microevolution and

transmission genetics.  Figure 2 is the full Biomass student model S, which consists of

fifteen variables. Each variable has been defined as having three ordered levels of

proficiency, High, Medium, and Low (H, M, L).  The ovals represent the SM variables,

the squares represent probability distributions, and the edges represent the dependence

relationships among variables.  Their forms will be discussed in Section 5.  The variables

each concern some aspect of disciplinary knowledge (e.g., the Mendelian model, denoted

DKMendel), working knowledge (e.g., taking steps in the inquiry process using relevant

disciplinary knowledge, denoted WKInqry), or integrated knowledge (e.g., reasoning

through models across systems or levels of organization, denoted IKSysOrg).  The model

depicts the hierarchical organization of disciplinary, working, and integrated knowledge

that was indicted by both our subject matter consultants and standards documents from

the domain (e.g., AAAS, 1994).

[[Figure 2 -- the full Biomass student model]]

Four multistage investigative tasks were developed, each consisting of a sequence of

segments that a student would work through in the course of the larger task.  Each

segment presented information about results from any previous segments that were

needed in the current segment, in order to reduce dependencies across segments.  As the

examples below illustrate, however, dependencies did occur within segments.  A total of

forty-eight evidence models were needed to manage incoming information about

students� proficiencies, with several EM-BIN structures appearing more than once.  Each

EM-BIN fragment contained between one and ten observable variables, and had from one

to four student-model variables in its footprint.

The examples we will address are from the first segment of an investigation in

transmission genetics, which we call �Agouti1�.  The student Jose discovers a population
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of mice, notes how many mice have each of four coat colorings, and decides to

investigate the mode of inheritance of coat color in mice.  This segment yields fourteen

observable variables, each providing a single categorical response on a 3-point scale.

These variables provide evidence about DKMendel and/or WKInqry through four EM-

BINs organized around clusters of related observations:

•  Evidence Model 1 (EM1) concerns aspects of a student�s diagrammatic expression of

Jose�s verbally-stated hypothesis about the mode of inheritance.  Figures 3 and 4

show a similar diagram and hypothesis, illustrating how a student would drag-and-

drop elements from a palette of symbols and terms to express her hypothesis.  Some

of the observable variables concerned the degree of correctness of the elements in

given drop targets; for example, on a 1-3 scale, how accurately the dominance

relation the student constructed matched Jose�s working hypothesis.  Others

concerned the consistency among different portions of the constructed response.  For

example, Jose posited a dominance relationship, but if a student indicated co-

dominance and genotype/phenotype combinations that were consistent with co-

dominance, then the observable variable concerning consistency between mode of

inheritance and expression of characteristics received a high value.  Seven distinct

aspects of this solution are captured as values of observable variables, all providing

evidence about DKMendel but probably dependent beyond their relationship through

that SM variable.

[[Figures 3 and 4 -- mode of inheritance tables, before & after responses]]

•  Evidence Model 2 (EM2) concerns a table that a student was asked to fill out,

concerning several statements about implications of the mode of inheritance.  In each

case the student was to indicate if this statement could be confirmed or rejected on the

basis of data from the field population alone, from the offspring of matings of known

members of the field population, and from the offspring of matings of the next

generation after that.  For example, it is a common misconception that if there were

more tan mice than black mice in the field population, then tan is the expression of a

dominant allele.  Maybe, maybe not!  There are three variables in this cluster, posited

by our experts to depend conjunctively on DKMendel and WKInqry, and

conditionally dependent beyond these joint influences.
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•  Evidence Model 3 (EM3) concerns three multiple-choice questions about implications

of forms of dominance.  DKMendel is the only SM variable, and the responses are

posited to be conditional independent.

•  Evidence Model 4 (EM4) asks what Jose should do next, after having formalized his

hypothesis about the mode of inheritance of hair color based on the field population.

There is just one observable variable.  The key to its solution is a central tenet of

inquiry in transmission genetics: Simply generating a hypothesis that is consistent

with a field population is not sufficient to conclude a mode of inheritance; one must

carry out crosses, to test the hypothesis, and revise if necessary.  Our experts

indicated that a student must know at least a bit about the Mendelian model to

respond to this question, but the quality of the response would depend mainly on the

ability to apply inquiry skills in this domain. The EM-BIN therefore must reflect an

inhibition relationship, in which a student must be above the Low level of DKMendel

to have chances at making a high-quality response that increase with increasing levels

of WKInqry.

4.0 PHASE 2: QUANTITATIVE PRIORS BASED ON EXPERT

KNOWLEDGE

This section addresses the conditional probability distributions for observable

responses, or the ( )mj
m

iimj sxp π,)(  and ( )mjmjp ηπ  terms.  We describe and illustrate the

�effective θ� method of assigning conditional probabilities to observable variables that

have ordered response categories.

4.1 The Samejima Model for Graded Responses

The most common IRT models are for binary outcomes. The two-parameter logistic

model for right/wrong (1/0) responses, for example, is logit(Pr(Xij =1| θ)) = aj (θ + bj) .

Samejima's (1969) graded response model extends this model to an observable Xij that

can take an integral value from 1 to K.  For k=2,�,K define:

Pr(Xij ≥ k|θ) = logit �1 (aj (θ + bjk)), (3)

with Pr(Xij ≥ 1|θ) = 1 and Pr(Xij ≥ K+1|θ) = 0.  Response-category probabilities can be

calculated from the differences of equations like (3); for k=1,�, K,
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Pr( Xij = k| θ) = Pr(Xij ≥ k|θ) - Pr(Xij ≥ k+1| θ). (4)

Figure 5 illustrates response category probabilities for a three-category task, with aj=1,

bj1 = -1, and bj2 = +1.  For very low values of θ, the lowest level of response is most

likely, then as θ increases, probabilities increase for higher-valued responses in an

orderly manner. A single value of θ specifies the full conditional distribution of all

possible response values.

[[Figure 5 � Samejima IRT curves]]

4.2 The “Effective θθθθ” Method

We are interested in finding models for ( )mj
m

iimj sxp π,)(  in the case where Si is a

discrete Bayesian network, Ximj is an discrete variable with ordered states, and πmj are

parameters we will specify shortly.  We employ the following device. First we pick a

fixed set of values for amj and bmj.2  Then we define a mapping function ( )mj
m

imj Sf π;)(  to

imjθ  on ( )+∞∞− , . We can now apply Samejima�s graded response model to fill out the

tables for Observable j of Task m.  Define

( ) ( )( )mjmjmj
m

mjmjmjk aSfkX b,;;Pr )( πθΨ ==

where the probability is computed with the Samejima graded response model as in (4)

with item parameters amj and bmj.

We gain two advantages with this transformation of the problem.  First, in the

multivariate case our experts may be comfortable describing the functional form for mjf

even if they are uncomfortable with specifying a conditional probability table (e.g., �You

have to know how to do A, but then you can solve the problem if you can carry out either

procedure B or procedure C.�)  This is especially true when tasks have been designed

from the start around predetermined schemas, for which the structures of recurring

evidentiary relationships are already provided.

Second, we have transformed the problem to a scale that is familiar to experts in

educational measurement.  Thus, they will more comfortable with elicitation process on
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this scale. The scale of IRT models is often set by standardizing the distribution of θ, and

in this metric a value of  -1 for b indicates an item that is somewhat easy for the

examinees, 0 a typical item, and +1 a somewhat difficult item; further, a parameters

typically range from about .3 to 3.  When the expert says she expects an item to be easy

for the intended population, or that responses will be fairly strongly related to

proficiency, we have a good idea of what the a and b parameters will be.  If we are

planning to refine the evidence models with pretest data we can elicit initial opinions in

the form of verbal parameters (e.g., �hard� or �easy�) that are assigned to numerical

priors predefined by psychometricians.

We describe this setup for the one dimensional and multidimensional cases below,

then show how the same approach can also be used to relax the assumption of

independent observations.

4.3 EMs with a Univariate Footprint

4.3.1 Basic Formulas

We begin with the case in which an observable Xmj has only one SM parent, which we

will denote S(m).  We define the conditional probabilities psmjk = p(Xmj=k| s(m)) using the

projection function ( )⋅mjg , a monotonic function of the levels of S(m), which we then

enter into a Samejima graded-response model with fixed item parameters amj and bmj.  (In

particular, we fix all amjs at 1).  Assuming the levels of S(m) are roughly equally spaced

and coding H=1, M=0, and L=-1, a linear function on the index i, ( ) mjmjmj dicig +=

gives us just two parameters to elicit from an expert no matter how many states of S(m) or

Xmj there are.  We interpret mjθ as a student�s proficiency specific to whatever aspect of

performance is captured by Observable Variable j of Task m, and ( )⋅mjg  as the projection

of S(m) into that space.  The constant parameter dmj is related to the average difficulty of

the item, and the slope cmj depends on the ability of the task to discriminate among levels

of gmj(S(m)).

                                                                                                                                                                            
2 Natural extensions for future work are estimating item parameters (being careful to not introduce
indeterminacies into the model) and experimenting with different IRT models for multiple-category
responses.
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We have thus far specified a structure for terms of the form ( )mj
m

iimj sxp π,)( , where

the hyperparameters mjπ specialize to cmj and dmj.  We may now suggest forms for the

( )mjp π  terms, or more specifically, ( )mjmj dcp , .  Leaning on intuition from IRT, we

propose for cmj a truncated normal distribution�a N(1,1) distribution, left truncated at

0�and for dmj, a normal distribution with a variance of 1 and a mean γmj based on expert

opinion:

�
�
�

�

��
�

�

�

+
+

−
−

=

itemeasy rather  afor 1
item n typicaleasier thaan for 5.

item  typicalafor 0  
item n typicalharder tha afor 5.

item hardrather  afor 1

mjγ

Thus,

( ) ( ) ( )
( ) ( ),1,1,1

,

mj

mjmjmjmj

NN

dpcpdcp

γ+=

=

where ( )σµ,N  represents the standard normal density with mean µ and standard

deviation σ, and ( )σµ,+N  is a normal density restricted to ( )+∞,0 .

4.3.2 An Example from Biomass

Evidence Model 3 concerns three conditionally independent responses to multiple

choice items, modeled as depending on DKMendel only.  Figure 6 depicts the EM-BIN as

an acyclic directed graph.  Each item has three ordered possible outcomes, which

correspond to a correct response, plausible distractors, and implausible distractors.  Our

experts said all three are items of typical difficulty, so the initial conditional probability

tables will be the same for all three items.  Centering the indices for DKMendel �1,0,1 for

convenience, we define ( )ig j3  = jc3 i + jd3  and set  γmj =0.  We will begin MCMC

estimation with starting values of 1 and 0 for jc3  and jd3 , so the states (L,M,H) will be

mapped to j3θ  values of -1, 0, and +1 respectively.  The item parameters a = 1 and b =

(-.5,+.5) are used for the graded-response IRT structure into which j3θ  is mapped.  Table

1 gives conditional response probabilities that correspond to our initial values for c and d.
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[[Figure 6: DAG for EM3]]

[[Table 1 -- Samejima curves ]]

4.4 EMs with Multivariate Footprints

Now suppose that S(m)  = ( ))()(
1 ,, m

L
m SS � .  It is necessary to construct a projection

function ( ))(m
imj Sf  from a vector of SM variables.   Before describing some projections

that are appropriate for some common evidentiary relationships, we mention three

categories into which they may be classified. The first two are elaborations of the linear

mappings discussed above for the univariate case.

•  Combinations of linear mappings.  For � =1,...,L, first define a linear mapping

( )
���� imjmjmjmj dicig θ≡+=  that specifies the marginal influence of )(mS

�
 as to

performance for Observable j on Task m.  Then define a function

( )imjLimjmjh θθ ,,1 �  that describes how the skills interact to produce proficiency

for this particular outcome. The compensatory and inhibitor functions discussed

below take this form. As in the univariate case, if we assume the skill levels are

roughly equally spaced we can describe that relationship with two parameters per

skill.

•  Linear mappings of combinations.  First define a function ( ) *
1 ,, smjLmj iiir =� of

the indices of L SM variables that describes the structure of their required

interaction, such as a maximum or a minimum.  Then define a linear mapping

( ) imjmjSmjmjSmjmj dicit θ≡+= **  that adjusts for overall difficulty and sensitivity.

The conjunctive and disjunctive functions discussed below take this form.  Only

two parameters are required in this case.

•  Everything else.  Many other structures mapping from multivariate skills to a

univariate effective θ can be constructed as the need arises, such as leaky

conjunctions and disjunctions, and logical exclusions and necessities.

It is also possible to construct chains of these combining functions, as we shall do

with Evidence Model 2 in the Biomass example.
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4.4.1 Compensatory Relationships

The most common function for modeling compensatory relationships is weighted

sums or averages, as in multiple factor analysis (Thurstone, 1947).  We can describe two

variations on this theme to use with the effective θ method.

The first is simply the sum of linear mappings for each SM variable involved.  That

is, for � =1,...,L, ( )
���� imjmjmjmj dicig θ≡+= , then ( )imjLimjmjh θθ ,,1 �  = �

�

�imjθ .  The

advantage of this formulation is that the relevance and difficulty of some aspect of

performance can be assessed with respect to each of the requisite skills, and information

about these factors may be available from experts and/or task features.

A disadvantage is that the individual difficulties are not well determined by response

data.  This can be seen by rewriting hmj as .�� +
��

� mjmj dic   The latter sum is tantamount

to the item difficulty parameter that is used in compensatory multivariate IRT models

(e.g., Reckase, 1985)�the only one, because component-wise difficulties are not

identified without additional structures across items.  An alternative formulation,

therefore, is ( ) mjlmj
m

mj inticSf � +=
�

�

)( , where intmj is a single intercept parameter for

Item j of Task m.

We postpone illustrating a compensatory relationship until the following section,

since the set of Agouti1 EMs does not include a simple compensatory relationship but it

does have conditional dependence relationships that are handled in a very similar way.

4.4.2 Conditional Dependence

Standard IRT models presume that all observable variables are independent given

student proficiency.  This assumption breaks down for tasks that yield multiple

observations, because all can be affected by familiarity with the topic, previous exposure,

misunderstandings of the setup, or transitory distractions.  We can model this situation by

introducing into the evidence model an independent context skill variable to allow for

relationships among observables within Task m. Context, which we may denote by Cm, is

then treated as an extra parent of all the observations j within Task m.  Other than being

discrete rather than continuous, this is the same way of handling conditional dependence
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used by Bradlow, Wainer, and Wang (1998) in IRT and Gibbons and Hedeker (1992) in

the factor analysis of binary variables.

4.4.2.1 Basic Formulas
Let S(m) be the footprint of Task m, which provides J observables Xm1, ..., XmJ.  If

( ) imj
m

imj Sf θ≡)(  would be the effective θ for calculating conditional probabilities for

Observable mj under conditional independence, we define

( ) ,,)(**
Cmmjimjm

m
iimjimj ieCSf +=≡ θθ

where iCm is the index of the context variable for Task m (centered around zero for

convenience) and emj is the strength of the intra-task dependence as it applies to

Observable j.  Conditional independence obtains when emj = 0.

The rationale is easiest to see when Context takes only two values, which can be

coded as �1 and +1 without loss of generality.  A set of θimj�s would map values of the

SM variables )(m
iS  into conditional probabilities independently for each Observable mj.

But now there are two sets of *
imjθ �s, one in which all values are higher than their

corresponding θimj�s by appropriate emj�s and another in which all are lower by the same

emj�s.  An examinee is characterized by an unknown value iCm that determines which of

these two (off)sets actually applies to that examinee.  It is marginalizing over the possible

iCm values, when the same one applies to all observables in Task m, that effects

conditional dependence.

4.4.2.2 An Example from Biomass
Evidence Model 1 concerns the �mode of inheritance� (MOI) table, which yields

seven observable variables.  Each is posited to depend on only one SM variable,

DKMendel, but all are allowed to be conditionally dependent beyond that.  Therefore, a

context variable pertaining to all the observables extracted as evaluations of distinct

aspects of this same solution to this complex task.  Figure 7 depicts this structure.  Note

that no distribution is shown for DKMendel; it is only a �stub� in the EM-BIN fragment.

A distribution is included for the Context variable, however.  It is local to this task only.

We define the Context for the mode-of-inheritance task (abbreviated CEM1) to have two
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values, High and Low, which we code as �1 and +1 respectively. Again each observable

has three possible outcomes, which correspond to High, Medium, and Low responses

(e.g., correct, partially correct, incorrect; or correct, incorrect but consistent, and incorrect

and inconsistent).

[[Figure 7: DAG for EM 1]]

Table 2 is a table of initial conditional probability distributions for Observable 1 of

Task 1, which our experts identified as easier than typical.  They were calculated as

follows:

•  111111 dic DKM +=θ

•  
11111

*
11 EMCie+=θθ

•  Initial values: 111 =c , 111 +=d , 5.11 =e .

[[Table 2: Conditional probs for EM 1]]

4.4.3 Conjunctive and Disjunctive Relationships

4.4.3.1 Basic Formulas
Simple conjunctive and disjunctive relationships can be structured as logical

operations on the values of SM variables, then mapped linearly to the effective scale.  A

conjunctive model posits that all skills in a set are required, and the lowest of them

determines the possibilities of performance.  If DKMendel and WKInqry combine

conjunctively to produce a response, for example, a student who is High on DKMendel

and Low on WKInqry is Low on the conjunction.  For a conjunctive relationship, then,

( ) ( )LLmj iiiir ,,min,, 11 ��

�

= .

A disjunctive model posits that there are several skills that could be used to solve a

problem, regardless of the status of others, so it is the highest of them that determines

performance. If DKMendel and WKInqry combine disjunctively to produce a response,

the same student who is High on DKMendel and Low on WKInqry is High on the

disjunction.  For a disjunctive relationship,

( ) ( )LLmj iiiir ,,max,, 11 ��

�

= .
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In either case, the logical function can be followed by a linear rescaling with

parameters c and d.

4.4.3.2 An Example from Biomass
Figure 8 shows the structure of Evidence Model 2.  Note the chaining, with the

conjunction of DKMendel and WKInqry followed by a compensatory combination with

the Context variable CEM2 for this set of three observable variables.  (Note that this is a

different variable from the context variable for the mode-of-inheritance table discussed

above.)  Tables 3 and 4 show the construction of initial conditional probabilities for the

first observable in this evidence model, which our experts expected to be a little harder

than usual.  Two tables are used to highlight the conjunctive mapping.  They were

calculated as follows:

•  ( ) ( )WKIDKMWKIDKM iiiir ,min,2121 =≡θ , with {Low, Medium, High} coded {-1,0,1}

for both variables.

•  212121
*
21 dc += θθ   (shown as Table 3 with initial values c21 = 1 and d21 = -.5)

•  
221

*
21

**
21 EMCie+=θθ  (shown as Table 4 with initial value 5.21 =e )

[[Figure 8: acyclic directed graph for EM 2]]

[[Tables 3 & 4: Conditional probs for EM 2]]

4.4.4 An Inhibition Relationship

In a simple inhibition (or enabler) relationship, one variable must attain a minimal

value in order for another variable�s values to produce an effect.  There is a hurdle that

must be overcome.

4.4.4.1 Basic Formulas

Consider an observable variable Xmj with a multivariate footprint S(m), such that )(
1

mS

inhibits the relationship between Xmj and its remaining SM parents { })()(
2 ,, m

M
m SS � .

Denote by ( ))(m
mjmj Sf −− ≡θ  the mapping from { })()(

2 ,, m
M

m SS �  to effective θ that applies

when a student is over the hurdle value i*�that is, *)(
1 iS m
i ≥ �and denote by
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( )( ))(min
)(

min m
mj

S
mj Sf

m
−=θ  the minimum value obtained of −

mjθ .  The inhibition relationship

can be written as

( ) ( )
��

�
�
�

<
≥

=
−

*)(
1

min

*)(
1

)(
)(**

 if
  if

iS
iSS

S m
imj

m
i

m
imjm

imj θ
θ

θ .

4.4.4.2 An Example
Figure 9 shows the structure of the EM-BIN fragment for Evidence Model 4, where

DKMendel is an inhibitor of WKInqry�note the stop sign as a symbol for the structure of

the distribution.  Table 5 gives a set of conditional probabilities that are obtained as

follows:

•  ( ) ( ) 44
*
44 , dicWKInqryWKInqryDKMendelf WKIEM +==− θ , where WKIi  is the index

of a student�s WKInqry value, +1, 0, or -1 corresponding to High, Medium, or Low.

•  44
min
4 dc +−=θ , the value of *

4θ  obtained when WKInqry is in its lowest state.

•  The hurdle value for DKMendel is Medium; that is, i* = 0 using the same indexing

scheme as for WKInqry.

•  ( )
�
�
�

=+−
≥+

=
Low DKMendelif

 Medium DKMendelif
,

44

44**
4 dc

dic
WKInqryDKMendel WKIθ

•  Initial values for c4 and d4 are 1 and 0 respectively.

[[Figure 9: DAG for EM 4]]

[[Table 5: Conditional probabilities for EM 4]]

4.5 The Complete Prior Specification for the Biomass Example

This section summarizes the prior distributions we specified for Agouti 1.  The focus

of the paper is on the EM-BINs, in particular the effective θ mappings discussed in some

detail above�but specifications are required for other parameters as well.  We will also

give summary statistics for the priors of selected parameters, so that we may compare

( ),,,Cat~ 321 λλλiDKMendel them with comparable statistics from posterior

distributions obtained after the field trial responses.
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4.5.1 Priors for Student-Model Variables

In this problem, there are only two student model variables of persistent interest:

DKMendel and WKInqry.  However, there are also Context variables, to introduce

dependencies among the observables within evidence models 1 and 2, that characterize

each student.  Thus for each student i, ( )iEMiEMiii CCWKInqryDKMendelS ,2,1 ,,,= .  All

are categorical variables, with DKMendel and WKInqry having three values each (High,

Medium, and Low) and CEM1 and CEM2 having two values each (High and Low). We start

with the following prior for DKMendel, positing prior exchangeability for students3:

( ),,,Cat~ 321 λλλiDKMendel

where �λ  is the probability that Student i is in State �  of DKMendel.  Dirichlet

distributions provide suitable priors.  We posit the relatively uninformative prior

( ) ( ).3,4,3Dir~,, 321 λλλ

An intuitive interpretation of this distribution is that corresponds to the amount of

information about the probabilities �λ that one would have after observing (3-1) + (4-1) +

(3-1) = 7 draws, of which 2, 3, and 2 fell into the first, second, and third categories.

The experts anticipate that DKMendel and WKInqry will be positively associated

among students; students with more knowledge about the concepts and representational

forms of the Mendelian model will probably have more skill in applying their knowledge.

We therefore posit a distribution for WKInqry that is conditional on DKMendel:  

( ) ( ),,,Cat~ 321 tttii tDKMendelWKInqry λλλ=

where �tλ  is the probability that Student i is in State �  of WKInqry given that she is in

State t of DKMendel.  We posit for these parameters a set of mild distributions that effect

a positive association:

( ) ( )
( ) ( )
( ) ( ).5,3,2Dir~,,

3,4,3Dir~,,
2,3,5Dir~,,

333231

232221

131211

λλλ
λλλ
λλλ

The context variables are posited to be independent of all other SM variables and

each other, with
                                                          
3  One could posit different priors for different students in the field trial, based on, say, how many courses
they had taken in genetics and how many in science in general.



Modeling conditional probabilities

Page 21

CEM1 ~ Bernoulli(.5) and CEM2 ~ Bernoulli(.5).

4.5.2 Priors for Evidence-Model Parameters

We may organize the remaining prior specifications in terms of evidence models.  In

all cases, we have used the Samejima graded response model with item parameters a=1

and b=(0,1).  We may therefore drop the subscripts indexing items and abbreviate the

Samejima model as ( ) ( )θθ kXk =≡Ψ Pr , where the observable and item parameters are

apparent from the context of use.

The footprint of EM1 in the student model is S(1)=(DKMendel, CEM1).  As described

above in Section 4.2.2.2, EM1 contains seven conditionally-dependent observables X11

through X17.

( ) ( )
( ),

,,,Pr

1111

*
1111

)1(
1

EMjjDKMj

jijjjiji

iedic

edcSkX

++Ψ=

Ψ== θ

( )1,1~11 Nd , ( )1,0~1 Nd j  for j=2,�7, and for j=1,�,7, ( )1 ~ 1,1jc N +  and

( )1 ~ 1,1je N + .

The footprint of EM2 is S(2)=(DKMendel, WKInqry, CEM2).  As described in Section

4.4.3.2, EM2 contains three conditionally-dependent observables X21 through X23, which

depend on the conjunction of DKMendel and WKInqry.  Thus,

( ) ( )
( )( ),,min

,,,Pr

2222

*
2222

)2(
2

EMjjWKIDKMj

jijjjiji

iediic

edcSkX

++Ψ=

Ψ== θ

( )1,5.~21 −Nd , ( )1,5.~22 −Nd , ( )1,0~23 Nd , and for j=1,�,3, ( )1,1~2
+Nc j  and

( )1,1~2
+Ne j .

The footprint of EM3 is simply S(3)=(DKMendel).  As described in Section 4.3.2,

EM3 contains three conditionally independent observables X31 through X33, and

( ) ( )
( ),

,,Pr

33

333
)3(

3

jDKMj

jijjiji

dic

dcSkX

+Ψ=

Ψ== θ

and for j=1,�,3, ( )1,0~3 Nd j  and ( )1,1~3
+Nc j .
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The footprint of EM4 is S(2)=(DKMendel, WKInqry).  As described in Section

4.4.4.2, EM4 contains one observable, X4, which depends mainly on WKInqry but is

inhibited by DKMendel. Thus,

( ) ( ),,,,Pr **
4222

)2(
2 ijjjiji edcSkX θΨ==

where

( )
�
�
�

=+−
≥+

=
Low DKMendelif

 Medium DKMendelif
,

44

44**
4 dc

dic
WKInqryDKMendel WKIθ ,

( )1,0~4 Nd , and ( )1,1~4
+Nc .

4.5.3 Summary Statistics for Selected Parameters

Tables 6, 7, and 8 give summary statistics for the prior distributions described above,

along with summary statistics for the posterior distributions that will be described in the

following section.  The tables concern item parameters, examinee-population parameters,

and individual-examinee distributions respectively.  These statistics are based on 50,000

draws from the prior using the Gibbs sampler used in Section 5, except without response

data.  Using the generic notation of (2), this means drawing from

( ) ( ) ( ) ( ) ( )., λληηπ pspppπ,η,λp i
i m j

mmmj∏∏∏=S (5)

Specialized to the Biomass example, S=(DKMendel, WKInqry), and their higher-level

parameters generically denoted λ are here parameters in categorical probability

distributions.  Note that in the Biomass example, the πmj terms are conditional

probabilities calculated directly through the Samejima model with effective thetas via

task parameters denoted generically by ηm, and are here c's, d's, and e's.  This means that

the ( )mmjp ηπ  are deterministic functions, and the only uncertainty associated with π's is

due to uncertainty about η's.

[[Tables 6, 7, and 8 � summary statistics for prior & posterior distributions]]

Note that the prior distributions for all the item slopes are identical, while the item

difficulties vary in accordance with the experts� judgments of their difficulties.  The

values for the examinee priors are means and standard deviations calculated with High=3,

Medium=2, and Low=1.
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5.0 PHASE 3: REFINEMENT BASED ON FIELD TRIAL DATA

We have spent some effort to build a Bayesian probability framework that expresses

our beliefs about the key relationships between knowledge and performance in the

Biomass tasks.  The probability distributions express the qualitative structure of the

relationships, and task and examinee parameters express the quantitative relationships

within that structure.  We are in a position to update our beliefs with information from

some actual observations.  The focus of Sections 5.1 and 5.2 is on posterior distributions

for task and examinee parameters--refinements of quantitative relationships within the

posited structure.  More briefly, Section 5.3 discusses criticism of the qualitative structure

itself.

5.1 The Markov Chain Monte Carlo setup

In Bayesian inference, parameters express belief about the nature and magnitude of

relationships in observable variables.  We are thus interested in posterior distributions for

those parameters, which incorporate information from realized observations into our prior

beliefs about the structure of the problem. This means conditioning on the particular

values of X obtained from students, to produce the following posterior distribution, stated

first in the generic notation:

( ) ( ) ( ) ( ) ( ) ( ).,,, )( λληηππληπ pspppsxp,p i
i m j

mmmjmj
m

iimj∏∏∏∝XS (6)

Note the similarity in form between the full Bayesian model for all observations and

parameters given earlier as (2) and the posterior for the parameters, given as (6).  The

difference is that in (6), the values of the observables are known and fixed.  We see that

these terms are the difference between the prior distribution for the parameters (5) and

their posterior(6).

Monte Carlo Markov Chain (MCMC) techniques provide a general approach to

computation in Bayesian inference (e.g., Gelman et al., 1995) that suits the modular

construction of assessment we argued for in Section 3.  A full treatment of MCMC

methods is beyond the current presentation, but the essential idea is to producing draws

from a series of distributions that is equivalent in the limit to drawing from the posterior

distribution of interest.  We used the BUGS computer program (Spiegelhalter, et al.,

1995) to effect a Gibbs sampling solution in our example.  Each iteration produces a
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value for each parameter in the model, drawn from what is called its "full conditional"

distribution: Its distribution conditional on not only the data, but a value for every other

parameter in the model.  In the Gibbs sampler, the values for the other parameters are

draws from their full conditional distributions on the previous iteration.  Using the

general notation and describing the process at the level of blocks of parameters for

convenience, the t+1th iteration looks like this:

Draw 1+tS  from ( )XS ,,, tttp ληπ ;

Draw 1+tη  from ( )XS ,,,1 tttp λπη + ;

Calculate 1+tπ  from 1+tη ; and

Draw 1+tλ  from ( )XS ,,, 111 +++ tttp ηπλ .

Under broad conditions, the distribution of draws from a sequence of iterations

converges to draws from a stationary distribution that is the desired posterior, and the

empirical distribution of a large number of draws for a given parameter approximates its

marginal distribution.  Summaries such as posterior means and variances can be

calculated; e.g., to construct self-contained SM- and EM-BIN fragments.

5.2 Posterior Distributions

Table 9 gives the responses of the 28 students in the field trial, and Tables 6-8,

introduced at the end of Section 4, include give summaries of posterior distributions for

parameters conditional on this data.  In this section we offer some observations on these

results.

[[Table 9 -- field trial data]]

Looking first at the response data, we note immediately a dearth of '2' responses,

except for the last observable.  In most cases, the students did well or poorly on most

aspects of the tasks, without many performances of intermediate quality--even though the

average of all the responses, with H=3, M=2, L=1, was 1.62, just about in the middle.

The students showed a great range in performance: Nothing better than the lowest

response from Students 3 and 26, to a majority of 3's for Student 22.

The items range from very difficult (nobody did better than the lowest response on

x14, x16, x17, and x22) to fairly easy (most students answered x11 correctly).  Did these
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results accord with the experts' prior expectations?  Sort of.  There were three items for

which they had opinions other than "typical."  They expected Observable 1 of Task 1 to

be easier, and it turned out to be the easiest one in the study.  They expected Observables

1 and 2 of Task 2 to be easier than typical, and they were.  But the four observables noted

above on which every student was rated Low were not expected to be different from

typical.  This may be due to the fact that the students in the field trial are not exactly the

same as the ones the experts had in mind as a target population.  They thought about how

hard a task would be for a student who had been working through a unit on this material,

and would be familiar with the notation and expectations used in the prototype.  Our

field-trial students did not have this advantage, which could differ from one task to the

next.

The prior distributions we posited for the parameters were fairly mild.  Looking at

posterior distributions of the, we see that the information in 14 responses each from 28

students was sufficient to impact distributions for individual students substantially, but it

had hardly any effect on belief about the distribution of SM variables (i.e., the λ 's).

Task parameter posteriors showed means that departed significantly from their priors.

The slopes for Context variables, for example, were initially all at 1.29; posterior means

ranged from .65 up to 3.18.  Intercept means, which were initially at 0 for typical items,

ranged from -2.94 for the items on which no one succeeded, up to 2.37, for a task that

about 2/3 of the students did well.  To see the effect of the data on the conditional

probabilities, compare Tables 10 and 11 for Observables 3 and 4 of Task 1.  They started

with the same initial conditional probability tables, since the experts expected both to be

about typical.  These tables have been calculated through the Samejima structure with the

posterior means of their respective task parameters.  Note that the revised conditional

distributions for Observable 3 show it is much easier than Observable 4, and much more

conditionally associated with the other observables within this task.

[[Tables 10 and 11 here � conditional probs for Observables 13 and 14,

with posterior means of task parameters]]

To quantify the amount of information about the various parameters, the parameter-

summary tables indicate a percentage increase in precision from priors to posteriors.  It is

calculated as follows:
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( ) ( )
( ) 2

22

SDprior 
SDprior SDposterior 100precisionin  Increase % −

−− −×= .

A value of zero would indicate no new information, while a value of 100 would mean

there was twice as much information about a parameter after seeing the data than before

seeing it.

There are only very modest increases for the parameters of the student distribution--

noticeable for the distribution of DKMendel, since every student contributes something,

with information from all of their responses, but almost none for conditional distributions

of WKInqry given DKMendel.  This latter result obtains both because there is less

information about WKInqry for each student and because the conditional distributions for

WKInqry would necessarily be based on fewer observations than a marginal distribution

for DKMendel, even if individual students' values were known with certainty.

Task parameters show increases in precision that are greater than those for student-

population parameters, but less than for individual students (see next paragraph).  In

general there are greater increases in precision of intercept parameters than for slope

parameters, a finding consistent with experience in IRT.   It is intriguing to see that

evidence is particularly weak for the slope parameters of the conjunction of DKMendel

and WKInqry in EM3.   Further investigation is needed to determine whether this is a

pervasive characteristic of combinations such as conjunctions and disjunctions.

There are substantial increases in precision for the posteriors of individual students, at

least as far as DKMendel is concerned.  These means are calculated as expected values

over the coding High=3, Medium=2, and Low=1, so high precision corresponds to

probability concentrated on one particular value.  Thus, posterior precision is very high

for students who performed at high levels on all tasks or at low levels on all tasks; almost

all of their posterior probability is on the highest or the lowest value of an SM variable.

We learn more about DKMendel than about WKInqry, mainly because there are more

observables that provide information about DKMendel.  Posterior precsion is greater for

DKMendel, and posterior means can be further from their prior means than is the case for

WKInqry.  With this small field trail data set we may not learn much about higher-level

parameters, but even given broad priors that rely on experts� opinions we are pretty sure
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that a student who does poorly on most of the observables is Low and a student who does

well is High!

5.3 Model Fit

Model criticism is an essential facet of Bayesian (or any other) statistical inference,

since the inferences that probability-based reasoning allows us to draw through models

are suspect if the data do not accord well with the model.  This regrettably brief section

outlines the route we are being to pursue in examining fit in the kinds of models we have

discussed in this paper.  The reader is referred Gelman et al. (1995) and chapters 9-13 of

Gilks, Richardson, and Spiegelhalter (1996) for discussions of model criticism in MCMC

estimation more generally.

The particular technique we are exploring is the use of 'shadow' data sets, created in

the course of MCMC iterations.  For each observed response ximj in the realized data, we

can define another variable yimj that follows exactly the same distribution we have

proposed and fit for ximj but is never observed.  If our model is correct, the actual data is a

plausible draw from the predicted distribution of the shadow data.  Thus, the distribution

of the shadow data or any summary statistic of it that is accumulated over the MCMC

iterations constitutes a tailor-made null distribution against which to evaluate how

surprising the data are in light of the model we have proposed.  (See Ludlow, 1986, for an

example of the usefulness of this approach in IRT before MCMC techniques were widely

available.)  Again using the generic notation, we use the following distribution to produce

the predictive distribution of the shadow data matrix Y:

( )
( ) ( ) ( ) ( ) ( ) ( ).,,             

,η,π,,
)()( λληηπππ

λ

pspppsxpsyp

p

i
i m j

mmmjmj
m

iimjmj
m

iimj∏∏∏∝

SXY

Table 12 presents one draw of shadow responses.  Note that the averages for both

observables and students approximate those of the observed data closely, including the

observables on which no actual students did better than Low.  The lack of �2� responses,

except for the final observable, is also replicated.  Any statistic of actual responses, such

as correlations and joint distributions as well as the marginal means we have shown,

could be calculated on the shadow data set as well.  Because the distribution of such

statistics could then be accumulated over iterations, an empirical null distribution would
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be obtained against which to evaluate how typical or how surprising the corresponding

feature of the real data was.

[[Table 12 -- shadow responses]]

One way we used the shadow data was to evaluate an index of examinee fit.  Define

the fit mean square for Examinee i as follows:

( )( )�� −=Ζ
m j

imjimji xEx 2
14

1 , (7)

where responses are coded H=3, M=2, L=1, and

( ) ( ).,Pr
3

1
�
=

==
k

miimjimj SkxxE π

In iteration t of the Gibbs sampler, these quantities can be evaluated conditional on the

draws of the task and examinee-population parameters.  So too can corresponding fit

mean squares in which each actual observations ximj in (7) is replaced by its shadow

counterpart yimj. The relevant index is the proportion of iterations in which the fit mean

square for the x's is greater than the one for the y's.  One run with 1000 iterations

produced values across the 28 examinees between .06 for Examinee 25 (the best fit) and

.78 for Examinee 18 (the worst fit).  Examinee 18's pattern is somewhat uncommon

because of High values for the slightly harder-than-typical observables x23 and x31,

coupled with a low value for the easier-than-typical observable x32.  The fact that the

highest empirical p-value was only .78 caused us some concern about the power of the

test.  We did a second run with an additional fictitious response vector, one with High

values for the harder observables and Low values for the easier ones:

xbadfit = (1,1,1,3,1,3,3,3,3,3,3,1,1,1).

We were comforted to see that of 20,000 draws of a shadow response pattern to this

maximally-bad fitting pattern, only 4 had a higher mean square--an empirical p-value of

.0002.  When a response vector is seriously out of sorts, this index will flag it.  (This is

just an existence proof, of course; a more serious analysis would run simulations to

characterize the specificity and the sensitivity of fit indices constructed in this manner.)
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6.0 CONCLUSION: NEXT STEPS

In this paper we have described an approach to building conditional probability

distributions for complex assessments, and illustrated the ideas with some specifics we

have worked out thus far.  There is much to do, along many dimensions.

Substantive issues concern the development of conditional-probability model

structures that are useful and re-usable across applications.   As the link between

substantive experts� ways of thinking about problems in their domain and statisticians�

ways of thinking about parameters and distributions, these structures must both

correspond to substantively important aspects of tasks and support sound estimation

procedures.  We have found this a challenge best met by a small team of experts focused

on this goal, whose work provides schemas for complex tasks and skeletons of the

evidentiary arguments that underlie them, to be fleshed out as many times and in as many

ways as task authors then care to do.  The alternative approach of creating complex tasks

without considering these issues looks to us like a loser, at least in the context of

medium- to large-scale assessment (as we argue in Mislevy, Steinberg, Breyer, Almond,

& Johnson, in press).  The practical benefits of efficiency and re-usability are foregone,

to be sure, but a more serious loss is the explicit and careful working through of the

evidentiary argument.  Messick�s 1994 paper on performance assessment remains

invaluable for thinking about how to design complex tasks.  We see our work as fleshing

out the psychometric implications of his ideas.

Estimation issues were not the focus of this presentation, but it is clear that attention

is required here as well.  Obvious steps would be running and monitoring chains of

MCMC iterations from multiple starting points, and more in-depth investigations of

model fit.  In particular, the different relationships among SM parents of observables

need to be compared.  Our experts proposed, and we fit, a conjunctive model for EM3.

Would a compensatory model have fit as well, or better?  The low efficiency for

estimating the item parameters of the conjunctive relationship suggests there may be

benefits in a bias toward linearity in models.  Other extensions we have mentioned along

the way include more flexible estimation of task conditional-probability structures, and

incorporation of task features as collateral information about task difficulty parameters.
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For the Biomass example itself, we should gather and analyze more data, increasing the

student sample size and expanding to more tasks.

Operational issues will flow from what we learn in the research described above.

That is, what kinds of tools, data structures, interfaces, and building-blocks help an

organization carry out this work efficiently on a large scale?  We have made some

progress already in tools for designing task and statistical-model fragments (see the

section on the Portal project in Frase et al., in press).  Extensions we see need for right

now include the automatic generation of BUGS code from our model-design tools,

interfaces to help task authors create tasks from libraries of task- and evidence-model

templates, and procedures for interacting with experts at both the levels of creating

schemas and supplying information about individual tasks created within those schemas.
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Table 1

Initial conditional probability distributions for all three Observables of Task 3

DKMendel Pr(X=k)
index1 θ2 Low Medium High

-1 -1.00 0.62 0.20 0.18
0 0.00 0.38 0.24 0.38
1 1.00 0.18 0.20 0.62

1 Low=-1, Medium=0, High=1
2 θ = 1.00*index + 0.00



Table 2

Initial conditional probability distributions for Observable 1 of Task 1

DKMendel Context Pr(X=k)
index1 θ11

2 index3 θ11
*4 Low Medium High

-1 0.00 -1 -0.50 0.50 0.23 0.27
-1 0.00 1 0.50 0.27 0.23 0.50
0 1.00 -1 0.50 0.27 0.23 0.50
0 1.00 1 1.50 0.12 0.15 0.73
1 2.00 -1 1.50 0.12 0.15 0.73
1 2.00 1 2.50 0.05 0.07 0.88

1 Low=-1, Medium=0, High=1
2

111111 dic DKM +=θ  = 1.00 iDKM + 1.00
3 Low=-1, High=1

4
11111

*
11 EMCie+=θθ = θ11 + .5 iEM1



Table 3

Effective θ for a conjunction of DKMendel and WKInqry

DKMendel WKInqry minimum
index1 index1 (DKM,WKI) θ2

-1 -1 -1 -1.50
-1 0 -1 -1.50
-1 1 -1 -1.50

0 -1 -1 -1.50
0 0 0 -0.50
0 1 0 -0.50

1 -1 -1 -1.50
1 0 0 -0.50
1 1 1 0.50

1 Low=-1, Medium=0, High=1
2 θ = 1.00*min(iDKM,iWKI) + -0.50



Table 4

Initial conditional probabilities resulting from a compensatory relationship between a

Context variable and the conjunction of DKMendel and WKInqry

Conjunction Context Pr(X=k)
θ1 index2 θ*3 Low Medium High

-1.50 -1 -2.00 0.82 0.11 0.08
-1.50 1 -1.00 0.62 0.20 0.18
-0.50 -1 -1.00 0.62 0.20 0.18
-0.50 1 0.00 0.38 0.24 0.38
0.50 -1 0.00 0.38 0.24 0.38
0.50 1 1.00 0.18 0.20 0.62

1 θ = 1.00*min(iDKM,iWKI) + -0.50
2 Low=-1, High=1
3

211
*

EMCie+=θθ = θ + .5 iEM2



Table 5

Initial conditional probabilities with DKMendel as an inhibitor of WKInqry

DKMendel WKInqry Pr(X=k)
index1 index1 θ∗∗ 2 Low Medium High

-1 -1 -1.00 0.62 0.20 0.18
-1 0 -1.00 0.62 0.20 0.18
-1 1 -1.00 0.62 0.20 0.18
0 -1 -1.00 0.62 0.20 0.18
0 0 0.00 0.38 0.24 0.38
0 1 1.00 0.18 0.20 0.62
1 -1 -1.00 0.62 0.20 0.18
1 0 0.00 0.38 0.24 0.38
1 1 1.00 0.18 0.20 0.62

1 Low=-1, Medium=0, High=1

2 ( )
�
�
�

=+−
≥+

=
LowDKMendel if

 MediumDKMendel if
,

44

44**
dc
dic

WKInqryDKMendel WKIθ

  with c4=1 and d4=0.



Table 6

Summary Statistics of Prior and Posterior Item Parameter Distributions

Evidence
Model

Parameter
Groups

Parameter
Name

Prior
Mean

Prior
SD

Posterior
Mean

Posterior
SD

% Increase
in Precision

EM1 Slopes for c11 1.29 0.79 2.06 0.71 25
DKMendel c12 1.29 0.79 1.04 0.63 58

c13 1.29 0.79 0.95 0.60 72
c14 1.29 0.79 0.80 0.57 95
c15 1.29 0.79 0.95 0.61 70
c16 1.29 0.79 0.79 0.56 101
c17 1.29 0.79 0.80 0.56 102

Slopes for e11 1.29 0.79 1.40 0.55 103
ContextEM1 e12 1.29 0.79 2.07 0.53 124

e13 1.29 0.79 3.18 0.63 58
e14 1.29 0.79 0.69 0.45 211
e15 1.29 0.79 3.18 0.63 57
e16 1.29 0.79 0.70 0.45 209
e17 1.29 0.79 0.70 0.45 205

Intercepts d11 1.00 1.00 2.31 0.60 181
d12 0.00 1.00 -0.34 0.52 273
d13 0.00 1.00 -0.26 0.63 157
d14 0.00 1.00 -2.92 0.59 193
d 15 0.00 1.00 -0.26 0.63 157
d16 0.00 1.00 -2.91 0.59 192
d17 0.00 1.00 -2.93 0.59 195

EM2 Slopes for c21 1.29 0.79 2.09 0.76 8
conjunction c22 1.29 0.79 1.11 0.65 46

c23 1.29 0.79 1.68 0.67 38
Slopes for e21 1.29 0.79 0.91 0.60 71
ContextEM2 e22 1.29 0.79 0.70 0.48 173

e23 1.29 0.79 0.65 0.45 213
Intercepts d21 -0.50 1.00 -1.55 0.60 178

d22 -0.50 1.00 -2.94 0.64 150
d23 0.00 1.00 -0.61 0.50 297

EM3 Slopes for c31 1.29 0.79 2.37 0.72 22
DKMendel c32 1.29 0.79 2.17 0.73 18

c33 1.29 0.79 2.28 0.72 19
Intercepts d31 0.00 1.00 -0.05 0.54 240

d32 0.00 1.00 1.14 0.51 294
d33 0.00 1.00 0.14 0.52 271

EM4 Slope c4 1.29 0.79 1.03 0.49 161
Intercept d4 0.01 1.00 0.81 0.43 433



Table 7

Summary Statistics of Prior and Posterior Population Parameter Distributions

Parameter
Groups

Parameter
Name

Prior
Mean

Prior
SD

Posterior
Mean

Posterior
SD

% Increase
in Precision

Distribution of λ1 0.30 0.14 0.31 0.09 118
DKMendel λ2 0.40 0.15 0.43 0.11 66

λ3 0.30 0.14 0.26 0.11 73

Conditional λ11 0.50 0.15 0.50 0.15 2
Distribution of λ12 0.30 0.14 0.30 0.14 0

WKInqry λ13 0.20 0.12 0.20 0.12 -1
given λ21 0.30 0.14 0.31 0.14 -3

DKMendel λ22 0.40 0.15 0.40 0.15 -1
λ23 0.30 0.14 0.29 0.13 7

λ31 0.20 0.12 0.19 0.11 17
λ32 0.30 0.14 0.31 0.14 0
λ33 0.50 0.15 0.50 0.15 8



Table 8

Summary Statistics of Prior and Posterior Student Parameter Distributions

DKMendel WKInqry

Student
Prior
Mean

Prior
SD

Post.
Mean

Post.
SD

% Increase
in Precision

Prior
Mean

Prior
SD

Post.
Mean

Post.
SD

% Increase
in Precision

1 2.00 0.77 2.11 0.48 157 2.00 0.82 1.62 0.72 28
2 2.00 0.77 1.03 0.16 2229 2.00 0.82 1.71 0.78 9
3 2.00 0.77 1.01 0.12 4390 2.00 0.82 1.71 0.79 8
4 2.00 0.77 1.63 0.53 114 2.00 0.82 1.67 0.76 16
5 2.00 0.77 2.10 0.47 175 2.00 0.82 1.97 0.80 5
6 2.00 0.77 2.13 0.45 201 2.00 0.82 1.97 0.79 5
7 2.00 0.77 1.83 0.44 206 2.00 0.82 2.15 0.75 18
8 2.00 0.77 1.95 0.50 136 2.00 0.82 1.89 0.73 26
9 2.00 0.77 1.02 0.12 3985 2.00 0.82 1.71 0.78 8

10 2.00 0.77 2.08 0.49 151 2.00 0.82 1.62 0.72 28
11 2.00 0.77 2.14 0.48 163 2.00 0.82 2.00 0.70 36
12 2.00 0.77 1.69 0.51 135 2.00 0.82 1.86 0.74 22
13 2.00 0.77 2.63 0.49 154 2.00 0.82 2.27 0.69 39
14 2.00 0.77 1.66 0.51 133 2.00 0.82 1.91 0.81 2
15 2.00 0.77 2.65 0.48 162 2.00 0.82 2.04 0.70 37
16 2.00 0.77 1.01 0.11 5180 2.00 0.82 1.71 0.78 9
17 2.00 0.77 2.94 0.23 1036 2.00 0.82 2.86 0.37 393
18 2.00 0.77 2.12 0.47 175 2.00 0.82 2.32 0.68 42
19 2.00 0.77 1.75 0.57 84 2.00 0.82 1.64 0.74 20
20 2.00 0.77 1.16 0.37 341 2.00 0.82 1.69 0.77 11
21 2.00 0.77 1.10 0.31 542 2.00 0.82 1.67 0.78 10
22 2.00 0.77 2.88 0.33 453 2.00 0.82 2.83 0.40 322
23 2.00 0.77 2.79 0.41 263 2.00 0.82 2.69 0.50 161
24 2.00 0.77 2.23 0.46 182 2.00 0.82 2.26 0.70 34
25 2.00 0.77 2.63 0.49 152 2.00 0.82 1.94 0.70 35
26 2.00 0.77 1.01 0.10 5490 2.00 0.82 1.70 0.79 8
27 2.00 0.77 2.18 0.44 212 2.00 0.82 2.25 0.71 32
28 2.00 0.77 2.61 0.50 143 2.00 0.82 1.58 0.67 47



Table 9
Observed Responses

Student x11 x12 x13 x14 x15 x16 x17 x21 x22 x23 x31 x32 x33 x4 Mean
1 3 1 1 1 1 1 1 1 1 1 3 3 1 2 1.50
2 1 1 1 1 1 1 1 1 1 1 1 1 1 3 1.14
3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1.00
4 3 1 1 1 1 1 1 1 1 1 1 1 3 2 1.36
5 3 3 3 1 3 1 1 1 1 1 1 3 3 3 2.00
6 3 1 1 1 1 1 1 1 1 1 3 3 1 3 1.57
7 3 1 1 1 1 1 1 1 1 2 1 3 1 3 1.50
8 3 1 3 1 3 1 1 1 1 2 1 3 3 2 1.86
9 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1.07

10 3 1 1 1 1 1 1 1 1 1 1 3 3 2 1.50
11 3 3 3 1 3 1 1 2 1 1 1 3 3 2 2.00
12 3 3 3 1 3 1 1 1 1 2 1 3 1 2 1.86
13 3 3 3 1 3 1 1 1 1 2 3 3 3 3 2.21
14 3 3 3 1 3 1 1 1 1 1 1 3 1 3 1.86
15 3 1 1 1 1 1 1 2 1 1 3 3 3 2 1.71
16 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1.00
17 3 3 1 1 1 1 1 3 1 3 3 3 3 3 2.14
18 3 1 3 1 3 1 1 1 1 3 3 1 3 3 2.00
19 3 3 1 1 1 1 1 1 1 1 3 1 1 2 1.50
20 1 1 1 1 1 1 1 1 1 1 1 3 1 2 1.21
21 3 3 3 1 3 1 1 1 1 1 1 1 1 1 1.57
22 3 3 3 1 3 1 1 3 1 3 3 3 3 3 2.43
23 3 1 1 1 1 1 1 3 1 2 3 3 3 3 1.93
24 1 1 1 1 1 1 1 1 1 2 3 3 3 3 1.64
25 3 3 3 1 3 1 1 1 1 2 3 3 3 2 2.14
26 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1.00
27 3 1 1 1 1 1 1 1 1 2 3 3 1 3 1.64
28 3 1 1 1 1 1 1 1 1 1 3 3 3 2 1.64

Mean 2.50 1.71 1.71 1.00 1.71 1.00 1.00 1.29 1.00 1.50 1.93 2.36 2.00 2.29 1.64



Table 10

Revised conditional probability table for Observable 3 of Task 1

DKMendel Context Pr(X=k)
index1 θ11

2 index3 θ11
*4 Low Medium High

-1 0.00 -1 -0.50 0.98 0.01 0.01
-1 0.00 1 0.50 0.08 0.11 0.81
0 1.00 -1 0.50 0.95 0.03 0.02
0 1.00 1 1.50 0.03 0.05 0.92
1 2.00 -1 1.50 0.88 0.07 0.05
1 2.00 1 2.50 0.01 0.02 0.97

1 Low=-1, Medium=0, High=1
2

111111 dic DKM +=θ  = 0.95 iDKM + -.26
3 Low=-1, High=1

4
11111

*
11 EMCie+=θθ = θ11 + 3.18 iEM1



Table 11

Revised conditional probability table for Observable 4 of Task 1

DKMendel Context Pr(X=k)
index1 θ11

2 index3 θ11
*4 Low Medium High

-1 0.00 -1 -0.50 0.98 0.01 0.01
-1 0.00 1 0.50 0.93 0.05 0.03
0 1.00 -1 0.50 0.96 0.03 0.02
0 1.00 1 1.50 0.85 0.09 0.06
1 2.00 -1 1.50 0.91 0.06 0.04
1 2.00 1 2.50 0.72 0.16 0.13

1 Low=-1, Medium=0, High=1
2

111111 dic DKM +=θ  = 0.80 iDKM + -2.92
3 Low=-1, High=1

4
11111

*
11 EMCie+=θθ = θ11 + 0.69 iEM1



Table 12
One Set of �Shadow� Responses

Student y11 y12 y13 y14 y15 y16 y17 y21 y22 y23 y31 y32 y33 y4 y Mean x Mean
1 3 1 1 1 1 1 1 1 1 1 1 1 2 3 1.36 1.50
2 1 3 1 1 1 1 1 1 1 1 3 1 1 1 1.29 1.14
3 1 1 2 1 1 1 1 1 1 1 2 2 1 3 1.36 1.00
4 3 1 1 1 1 1 1 1 1 1 3 1 1 3 1.43 1.36
5 3 3 3 1 3 1 1 1 1 1 3 3 3 3 2.14 2.00
6 3 1 1 1 1 1 1 1 1 2 3 2 3 3 1.71 1.57
7 2 3 1 1 3 1 1 1 1 1 3 3 2 2 1.79 1.50
8 3 2 3 1 1 1 1 3 1 3 2 2 1 1 1.79 1.86
9 3 1 1 1 1 1 1 1 1 1 1 1 2 1 1.21 1.07

10 3 1 1 1 1 1 1 1 1 1 3 3 3 2 1.64 1.50
11 2 3 2 1 3 2 1 1 1 3 3 3 3 2 2.14 2.00
12 3 3 3 1 3 1 1 1 3 1 3 3 1 2 2.07 1.86
13 3 2 3 1 1 1 1 2 3 3 2 3 3 2 2.14 2.21
14 3 3 3 1 1 1 1 1 1 1 3 1 1 2 1.64 1.86
15 1 1 3 1 1 1 1 1 1 1 3 3 3 1 1.57 1.71
16 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1.14 1.00
17 3 1 2 1 1 1 1 3 1 3 3 3 3 2 2.00 2.14
18 3 3 1 1 1 1 1 3 1 3 3 3 3 3 2.14 2.00
19 3 3 3 1 1 1 1 1 1 1 2 1 1 2 1.57 1.50
20 1 3 1 1 1 1 1 1 1 1 1 1 2 1 1.21 1.21
21 3 1 1 1 1 1 1 1 1 1 1 3 2 1 1.36 1.57
22 3 3 3 1 1 1 1 2 1 2 3 3 2 1 1.93 2.43
23 3 2 1 1 1 1 1 3 2 1 3 3 3 1 1.86 1.93
24 3 1 1 1 1 1 1 1 1 2 3 3 3 1 1.64 1.64
25 3 3 3 1 3 1 1 1 1 3 3 3 2 1 2.07 2.14
26 3 1 1 1 1 1 1 1 1 1 1 2 1 1 1.21 1.00
27 3 1 1 1 1 1 1 1 1 1 1 3 2 3 1.50 1.64
28 3 2 1 1 1 1 2 1 1 2 3 3 2 3 1.86 1.64

y Mean 2.64 1.93 1.75 1.00 1.36 1.04 1.04 1.36 1.18 1.57 2.36 2.29 2.04 1.86 1.67
x Mean 2.50 1.71 1.71 1.00 1.71 1.00 1.00 1.29 1.00 1.50 1.93 2.36 2.00 2.29 1.64
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Figure 1: A generic acyclic directed graph of a Bayesian model
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Figure 2:  The full Biomass student model.



Figure 3: A mode of inheritance table, before responses



Figure 4: A mode of inheritance table, after responses
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Figure 5: Response category curves from the Samejima graded response model, with a=1
and b=(-1,+1)
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Figure 6: A directed acyclic graph for Evidence Model 3
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Figure 7: A directed acyclic graph for Evidence Model 1
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Figure 8: An acyclic directed graph for Evidence Model 2, showing the conjunction of
DKMendel and WKInqry, foloowed by a compensatory relationship with a Context
variable that introduces conditional dependence.
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Figure 9: An acyclic directed graph for Evidence Model 4


